Bovine and mouse serum beta inhibitors of influenza A viruses are mannose-binding lectins.
نویسندگان
چکیده
Normal bovine and mouse sera contain a component, termed beta inhibitor, that inhibits the infectivity and hemagglutinating activity of influenza A viruses of the H1 and H3 subtypes. To investigate the nature of the interaction of beta inhibitors with influenza A viruses we isolated a mutant of the virus Mem71H-BelN (H3N1) that could grow in the presence of bovine serum. The mutant virus was resistant to hemagglutination inhibition by mouse serum as well as by bovine serum and had undergone changes in the receptor-binding and the antigenic properties of its hemagglutinin (HA) molecule. Sequence analysis of the HA genes of parent and mutant viruses revealed a single nucleotide change in the mutant, resulting in the substitution Thr----Asn at residue 167 of the HA1 chain of HA. This change leads to loss of the potential glycosylation site Asn-165-Val-166-Thr-167 at the tip of the HA spike, which in viruses of the H3 subtype is known to bear a high-mannose (type II) carbohydrate side chain N-linked to Asn-165. The association of beta inhibitor resistance with loss of this carbohydrate side chain suggested that beta inhibitors may be lectins. In support of this hypothesis, treatment of the beta inhibitor-sensitive parent virus Mem71H-BelN with periodate converted it to the resistant state. Furthermore, the inhibitory activity of both bovine and mouse sera for the parental virus was abrogated by D-mannose. We conclude that the beta inhibitors in bovine and mouse sera are mannose-binding lectins that inhibit hemagglutination and neutralize virus infectivity by binding to carbohydrate at the tip of the HA spike, blocking access of cell-surface receptors to the receptor-binding site on HA.
منابع مشابه
Involvement of the mannose receptor in infection of macrophages by influenza virus.
Influenza viruses A/PR/8/34 (PR8; H1N1), A/Aichi/68 X-31 (HKx31; H3N2), and A/Beijing/89 X-109 (BJx109; H3N2) show marked differences in their ability to infect murine macrophages, including resident alveolar and peritoneal macrophages as well as the macrophage-derived cell line J774. The hierarchy in infectivity of the viruses (PR8 < HKx31 < BJx109) resembles that of their reactivity with mann...
متن کاملP 144: Sunflower Mannose binding Lectin-Associated Serine Protease Inhibitor-1 (SFMI-1) and -2: Significant Inhibitors of Mannose binding Lectin Pathway which Helps in Multiple Sclerosis Treatment
One of the important parts of innate immunity is complement system that occurs in three different ways; the classic, the alternative and the lectin pathway. The four pattern recognition molecules that have been identified till now are Mannose binding lectin (MBL), a component of lectin pathway, and three ficolins (ficolin1,-2 and -3) which compound to the carbohydrates of the cell surface. MBL ...
متن کاملCollectin-mediated antiviral host defense of the lung: evidence from influenza virus infection of mice.
Collagenous lectins (collectins) present in mammalian serum and pulmonary fluids bind to influenza virus and display antiviral activity in vitro, but their role in vivo has yet to be determined. We have used early and late isolates of H3N2 subtype influenza viruses that differ in their degree of glycosylation to examine the relationship between sensitivity to murine serum and pulmonary lectins ...
متن کاملInteractions of ficolin and mannose-binding lectin with fibrinogen/fibrin augment the lectin complement pathway.
Ficolin and mannose-binding lectin (MBL) are animal lectins that are involved in innate immunity by initiating the lectin complement pathway. Here, we report that interactions between these lectins and fibrinogen/fibrin augment the lectin pathway. An ELISA revealed that recombinant mouse ficolin A (rFcnA), rMBL-A and rMBL-C bind to fibrinogen in a dose-dependent manner. Affinity Western blottin...
متن کاملMolecular Identification of Pre-Existing Immunityin Human against H9N2 Influenza Viruses Using HLA-A*0201 Binding Peptides
Background and Aims: The contribution genetic and antigenic diversity of H9N2 influenza viruses in evading from immune responses, cytotoxic T lymphocytes (CTL) epitopes in hemagglutinin (HA) protein restricted by HLA binding peptides was identified. Materials and Methods: Phylogenetic analyses were carried out for all of full length HA and deduced amino acid sequences of H9N2 viruses available ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 87 12 شماره
صفحات -
تاریخ انتشار 1990